Máquina de raio-X mais rápida e brilhante do mundo vai funcionar em 2023
Se a primeira versão dela já produzia cerca de 100 pulsos de raio-X por segundo, esse número foi para 1 milhão por segundo
Elétrons voando quase à velocidade da luz, em um túnel abaixo da Califórnia (EUA), começarão a produzir os raios-X mais brilhantes já vistos, ainda no início deste ano. A empreitada está sendo desenvolvida no SLAC National Accelerator Laboratory e permitirá aos pesquisadores analisar átomos e moléculas em detalhes.
O laboratório atualizou recentemente seu laser de raios-X Linac Coherent Light Source (LCLS) para ser o mais rápido e brilhante do mundo. Se a primeira versão dele já produzia cerca de 100 pulsos de raio-X por segundo, a segunda aumentará esse número para 1 milhão.
Dentro dessa grande máquina de laser, os elétrons vão se mover através de um tubo de metal de três quilômetros de comprimento.
O caminho dos elétrons para o raio-X
A ideia é que os cientistas derrubem os elétrons de uma placa de cobre com luz ultravioleta. Em seguida, serão usados equipamentos que emitem pulsos de microondas para empurrá-los para perto da velocidade da luz.
Nessas condições, eles vão passar por milhares de ímãs em fileiras a alguns milímetros de distância, com polos magnéticos alternados. Os pólos serão responsáveis por balançar os elétrons para frente e para trás, produzindo raios-X com pulsos de 1 milhão por segundo.
Os pulsos elétricos podem servir para se obter imagens dentro de materiais, da mesma forma que acontece com os raios-X médicos, só que 1 trilhão de vezes mais brilhante.
"Podemos ver escalas de tempo em que os átomos fazem contato uns com os outros, em que ligações químicas são feitas ou quebradas. Será como assistir a um filme de moléculas evoluindo", afirmou Mike Dunne, da SLAC.
Mas para que serve?
A utilidade do experimento, para Amy Cordones-Hahn, também da SLAC, será para estudos que vão desde a física fundamental até o projeto de painéis solares e desenvolvimento de medicamentos.
Para atualizar a primeira versão do LCLS, os pesquisadores reformaram o túnel que guia os elétrons por meio dos ímãs, trocando o revestimento de cobre por um de nióbio, que resfriado a cerca de -271ºC, se torna um supercondutor. Caso essa reforma não tivesse sido feita, o laser teria derretido o túnel.
Foram 700 metros de pedaços de nióbio em laboratórios de todos os Estados Unidos, que depois tiveram que ser transportados para a Califórnia. Os ímãs também precisaram ser dispostos de forma muito precisa, porque o menor erro de alinhamento poderia incorrer em erros no experimento.